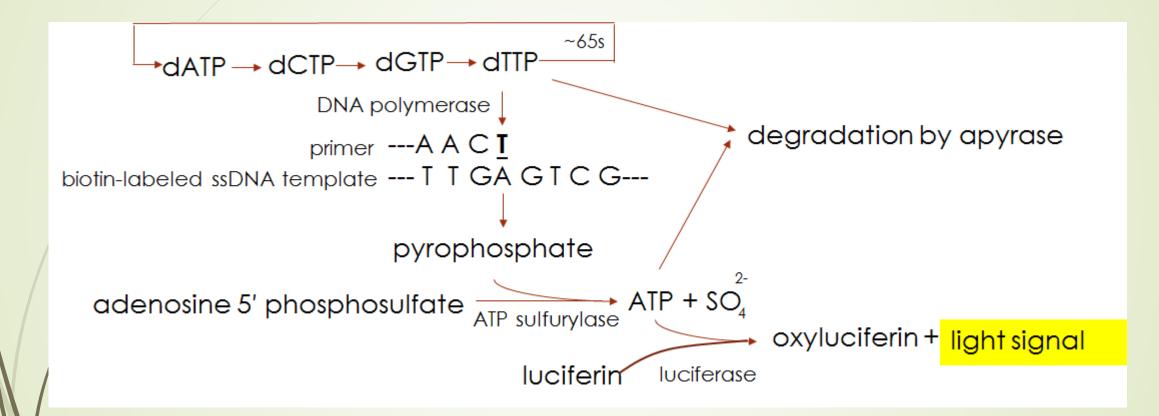
Use of pyrosequencing in clinical microbiology laboratory

Student: CHEUNG Yuk Yam, Andy Supervisor: Prof Mamie HUI Joint Graduate Seminar Dec 2014 Department of Microbiology, Faculty of Medicine, The Chinese University of Hong Kong


Introduction Pros & Cons Applications of pyrosequencing in clinical microbiology lab Future applications Conclusion

DNA sequencing

- DNA sequencing is one of the most important tools for the study of microbiology today.
- Sequence determination is first performed using the chain termination sequencing method, Sanger sequencing, developed by Frederick Sanger and his colleagues in 1977 (Sanger et al., 1977) [still is in use after more than 30 years].
- Pyrosequencing, a rather "new" DNA sequencing technology, is developed by Mostafa Ronaghi and Pål Nyrén at the Royal Institute of Technology in 1996.

Pyrosequencing

- Pyrosequencing is a method of DNA sequencing based on the "sequencing by synthesis" principle
- Differs from Sanger sequencing, pyrosequencing relies on the detection of pyrophosphate release on nucleotide incorporation.

	1
Pros	Cons
1. fast (1day)	1. expensive
2. high thoroughput	2. relatively high error rate
(>200,000 reads)	(0.0098)
3. >200bp	 homopolymer Ts->bad signal (more than 3-4)
4. unlimited sample number	
5. frequency data	
6. generate sequence signals	
immediately downstream of	
the primer	
7. sample preparation is easy	
and rapid	
8. fewer DNA templates needed	

Application-Bacterial 1

Bacterial identification

HOME CURRENTISSUE ARCHIVE ALERTS ABOUT ASM CONTACT US TECH SUPPORT Journals.ASM.Org

Institution: CHINESE UNV OF HONG KONG

DNA Pyrosequencing-Based Bacterial Pathogen Identification in a Pediatric Hospital Setting^{+†}

Ruth Ann Luna^{1,2}, Lea R. Fasciano¹, Shaunte C. Jones¹, Bobby L. Boyanton Jr.², Trang T. Ton¹ and James Versalovic^{1,2,*}

- Author Affiliations

¹Division of Molecular Pathology, Department of Pathology, Texas Children's Hospital, Houston, Texas ²Department of Pathology, Baylor College of Medicine, Houston, Texas « Previous | Next Article » Table of Contents

This Article

Accepted manuscript posted online 25 July 2007, doi: 10.1128/JCM.00630-07

J. Clin. Microbiol. September 2007 vol. 45 no. 9 2985-2992

» Abstract Figures Full Text PDF

User Name

User Name

Password

keywords

Advanced »

Current Issue

.....

LOG-IN

 $\mathbf{\Omega}$

Luna et al. 2007

- DNA pyrosequencing: identification of atypical clinical isolates
- isolates that lacked a definitive identification by biochemical testing
- in a large children's hospital (Texas, USA)
- 16S rRNA genes: target sequences flanking the variable V1 and V3 regions
- 414 isolates from 312 pediatric patients
- genus- or species-level identifications: ~90% of cases

Application-Bacterial 2

Detection of mutations that confer antibiotic resistance

International Journal of Antimicrobial Agents Volume 34, Issue 5, November 2009, Pages 414–418

Detection of point mutations associated with antibiotic resistance in *Pseudomonas aeruginosa*

Neda Gorgani^{a, b, 1}, Scott Ahlbrand^{c, 1}, Andrew Patterson^c, Nader Pourmand^{a, d,} 🍐

Show more

doi:10.1016/j.ijantimicag.2009.05.013

Get rights and content

Abstract

Excessive use of broad-spectrum antibiotics in hospitals has led to the emergence of highly resistant strains of *Pseudomonasaeruginosa*. To reduce the selection pressure for resistance, it is important to determine the antibiotic susceptibility pattern of bacteria so that hospital patients can be treated with more narrow-spectrum and target-specific antibiotics. This study describes the development of a technique for detecting point muations in the fluoroquinolone resistance-determining region of the *gyrA* and *parC* genes as well as the efflux regulatory genes mexR, mexZ and mexOZ that are associated with fluoroquinolone and aminoglycoside resistance. The assay is based on a short DNA sequencing method using multiplex-fast polymerase chain reaction (PCR) and PyrosequencingTM for amplification and sequencing of the selected

Gorgani et al. 2009

detect point mutations in 59 clinical isolates of P. aeruginosa

-fluoroquinolone resistance-determining region of the gyrA and parC genes

-efflux regulatory genes *mexR*, *mexZ* and *mexOZ* (associated with fluoroquinolone and aminoglycoside resistance)

- multiplex polymerase chain reaction
- and then pyrosequencing for sequencing of the selected genes
- Mutations related to antibiotic resistance were detected in codons 83 and 87 of gyrA and codon 126 of the mexR regulatory gene
- determine the antibiotic resistance pattern of a given bacterial strain in <1 h.

Application-Fungal 1

Fungal identification

> Mycoses > Vol 47 Issue 1-2 > Abstract

Gharizadeh et al. 2004

- identification of different clinically relevant fungi
- 21 fungal specimens consisting of nine strains of clinically relevant fungi
- 18S rRNA gene using polymerase chain reaction (PCR) universal primers for amplification
- Sequencing : up to 40 bases
- Results: all identifed
- a reproducible and reliable technique for identification of fungal pathogens.

Application-Fungal 2

Detect mutation that confer antifungal resistance

Journal of AMERICAN SOCIETY FOR MICROBIOLOGY **Clinical Microbiology**

HOME CURRENT ISSUE ARCHIVE ALERTS ABOUT ASM CONTACT US TECH SUPPORT Journals.ASM.Org

Institution: CHINESE UNV OF HONG KONG

Detection of Aspergillus fumigatus and a Mutation That Confers Reduced Susceptibility to Itraconazole and Posaconazole by Real-Time PCR and Pyrosequencing

Jason P. Trama, Eli Mordechai and Martin E. Adelson*

- Author Affiliations

Medical Diagnostic Laboratories, L.L.C., Hamilton, New Jersey

« Previous | Next Article » Table of Contents

This Article

doi: 10.1128/JCM.43.2.906-908.2005 J. Clin. Microbiol. February 2005 vol. 43 no. 2 906-908

» Abstract Figures Full Text PDF

Trama et al. 2005

- real-time PCR and pyrosequencing
- detect Aspergillus fumigatus in whole blood
- cyp51A gene and sequencing the codon for glycine 54
- mutation: confer reduced susceptibility to itraconazole and posaconazole

Application-Viral 1

Viral typing

An official journal of the United States & Canadian Academy of Pathology, Inc

Search

Journal home > Archive > Articles > Abstract

Journal home	Article	
Advance online publication	Lab Invest 2001, 81:673-679	
. About AOP	Typing of Human Papillomavirus by Pyrosequencing	
Current issue		
Archive	Baback Gharizadeh ¹ , Mina Kalantari ² , Carlos A Garcia ¹ , Bo Johansson ² and	
E Pathobiology in Focus	Pål Nyrén ¹	
Author index	¹ Department of Biotechnology Royal Institute of Technology, Stockholm, Sweden ² Department of Immunology, Microbiology, Pathology and Infectious Diseases, Division of Clinical Virology, Karolinska Institutet, Huddinge University Hospital, Huddinge, Sweden Correspondence: Dr. Pål Nyrén, Department of Biotechnology, The Royal Institute of	
Keyword index		
Web focus		
Press releases	Technology, Teknikringen 34, SE-100 44 Stockholm, Sweden. E-mail:	
Announcements	paaln@biochem.kth.se	
Inside USCAP Journals	Received 13 November 2000.	

Gharizadeh et al. 2001

- HPV genotyping by pyrosequencing
- Sequencing target: 50 nucleotide bases of the L1 protein gene
- Only 14 38 bases needed

Application-Viral 2

Monitoring antiviral resistance

HOME CURRENTISSUE ARCHIVE ALERTS ABOUT ASM CONTACT US TECH SUPPORT Journals.ASM.Org

Institution: CHINESE UNV OF HONG KONG

Monitoring Resistance to Human Immunodeficiency Virus Type 1 Protease Inhibitors by Pyrosequencing

Deirdre O'Meara¹, Karin Wilbe², Thomas Leitner², Bo Hejdeman³, Jan Albert⁴, and Joakim Lundeberg¹,^{*}

- Author Affiliations

Department of Biotechnology, Royal Institute of Technology (KTH), S-100 44 Stockholm,

Department of Clinical Virology, Swedish Institute for Infectious Disease Control/Karolinska Institute, S-171 82 Stockholm, 2

Department of Dermatovenereology, Södersjukhuset, S-118 83 Stockholm, 3 and

Department of Clinical Virology (IMPI), Karolinska Institute, Huddinge University Hospital, S-141 86 Stockholm, ⁴ Sweden « Previous | Next Article » Table of Contents

This Article

doi: 10.1128/JCM.39.2.464-473.2001 J. Clin. Microbiol. February 2001 vol. 39 no. 2 464-473

» Abstract Figures Full Text PDF

Classifications

VIROLOGY

- Article Usage Stats

Article Usage Statistics

- Services

O'Meara et al. 2001

- codon changes that involved in HIV type 1 protease inhibitor resistance
- viral RNA prepared from plasma samples from HIV-1-infected individuals
- 12 primers for 34 codon changes that involved in drug resistance
- parallel analysis of 96 reactions in 1 h
- monitor drug resistance in 8 patients simultaneously

Other applications in Medicine

The Journal of Molecular Diagnostics Volume 9, Issue 4, September 2007, Pages 464–471

Regular Articles

Application of a *BRAF* Pyrosequencing Assay for Mutation Detection and Copy Number Analysis in Malignant Melanoma

Cynthia Spittle^{*}, M. Renee Ward[†], Katherine L. Nathanson[‡], Phyllis A. Gimotty[§], Eric Rappaport[¶], Marcia S. Brose[∥], Angelica Medina[‡], Richard Letrero[‡], Meenhard Herlyn^{**}, Robin H. Edwards^{††}, **▲**, **≅**

* Fox Chase Cancer Center, Philadelphia, Pennsylvania

[‡] Department of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania

§ Departments of Biostatistics and Epidemiology, University of Pennsylvania, Philadelphi

Department of Otorhinolaryngology, University of Pennsylvania, Philadelphia, Pennsylv

^{††} Departments of Pathology and Laboratory Medicine, University of Pennsylvania, Phila

 \P The Joseph Stokes Jr. Research Institute, Children's Hospital of Philadelphia, Philadelp

** The Wistar Institute, Philadelphia, Pennsylvania

[†] Pharmion Corporation, San Francisco, California

Accepted 23 March 2007, Available online 28 December 2010

Clinical Chemistry

Pyrosequencing Method for Genotyping Cytochrome P450 CYP2C8 and CYP2C9 Enzymes


Matthew W. Hruska, Reginald F. Frye and Taimour Y. Langaee^a

- Author Affiliations

¹College of Pharmacy, University of Florida, Gainesville, FL

In the future

- pyrosequencing more affordable, rapid, and simple to use
- Whole genome sequencing
- e.g. the genomes (common human pathogens such as E. coli, Pseudomonas aeruginosa, and S. aureus) range 2–5Mb
- cost of pyrosequencing: \$1 to \$60/Mb
- cost of sequencing a single bacterial genome:\$2 to \$300
- \$200 to \$400 per genome (included DNA preparation, etc) (Fakruddin et al. 2012)

Microbiome analysis -e.g. complex biodiversity of human guts -any altered microbiome? Taxonomy and epidemiology -novel species or subspecies Virtual resistance testing

Conclusion

- Pyrosequencing is a powerful tool for bacterial identification, fungal identification and viral typing in clinical microbiology laboratory
- It can also be used to detect mutations that are involved in drug resistance

References

- Sanger, F., Nicklen, S., & Coulson, A. R. (1977). DNA sequencing with chain-terminating inhibitors. Proceedings of the National Academy of Sciences, 74(12), 5463-5467.
- Luna, R. A., Fasciano, L. R., Jones, S. C., Boyanton, B. L., Ton, T. T., & Versalovic, J. (2007). DNA pyrosequencing-based bacterial pathogen identification in a pediatric hospital setting. *Journal of clinical microbiology*,45(9), 2985-2992.
- Gorgani, N., Ahlbrand, S., Patterson, A., & Pourmand, N. (2009). Detection of point mutations associated with antibiotic resistance in< i> Pseudomonas aeruginosa</i>. International journal of antimicrobial agents, 34(5), 414-418.
- Gharizadeh, B., Norberg, E., Löffler, J., Jalal, S., Tollemar, J., Einsele, H., ... & Nyrén, P. (2004). Identification of medically important fungi by the PyrosequencingTM technology. *Mycoses*, 47(1-2), 29-33.
- Trama, J. P., Mordechai, E., & Adelson, M. E. (2005). Detection of Aspergillus fumigatus and a mutation that confers reduced susceptibility to itraconazole and posaconazole by real-time PCR and pyrosequencing. *Journal of clinical microbiology*, 43(2), 906-908.
- Gharizadeh, B., Kalantari, M., Garcia, C. A., Johansson, B., & Nyrén, P. (2001). Typing of human papillomavirus by pyrosequencing. Laboratory investigation, 81(5), 673-679.
- O'Meara, D., Wilbe, K., Leitner, T., Hejdeman, B., Albert, J., & Lundeberg, J. (2001). Monitoring resistance to human immunodeficiency virus type 1 protease inhibitors by pyrosequencing. *Journal of clinical microbiology*, 39(2), 464-473.
- Spittle, C., Ward, M. R., Nathanson, K. L., Gimotty, P. A., Rappaport, E., Brose, M. S., ... & Edwards, R. H. (2007). Application of a < i> BRAF </i> Pyrosequencing Assay for Mutation Detection and Copy Number Analysis in Malignant Melanoma. The Journal of Molecular Diagnostics, 9(4), 464-471.
- Hruska, M. W., Frye, R. F., & Langaee, T. Y. (2004). Pyrosequencing method for genotyping cytochrome P450 CYP2C8 and CYP2C9 enzymes. Clinical chemistry, 50(12), 2392-2395.
- Fakruddin, M., Chowdhury, A. B. H. I. J. I. T., Hossain, M. N., Mannan, K. S., & Mazumda, R. M. (2012). Pyrosequencing-principles and applications. Int J Life Sci Pharma Res, 2, 65-76.

Thank you!